Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
World J Clin Cases ; 11(6): 1287-1298, 2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2260342

ABSTRACT

BACKGROUND: New onset hyperglycemia is common in patients with severe coronavirus disease 2019 (COVID-19) infection. Cytokine storm due to COVID-19 infection is an essential etiology for new-onset hyperglycemia, but factors like direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced pancreatic ß-cell failure have also been postulated to play a role. AIM: We plan to investigate further the mechanisms underlying SARS-CoV-2 infection-induced hyperglycemia, particularly the rationale of the cytokine-induced hyperglycemia hypothesis, by evaluating the association between inflammatory markers and new onset hyperglycemia in non-diabetic patients with COVID-19 infection. METHODS: We conducted a retrospective case-control study on adults without diabetes mellitus hospitalized for COVID-19 infection. The serum levels of glucose and inflammatory markers at presentation before initiation of corticosteroid were collected. Hyperglycemia was defined as glucose levels ≥ 140 mg/dL. C-Reactive protein (CRP) ≥ 100 mg/L, ferritin ≥ 530 ng/mL, lactate dehydrogenase (LDH) ≥ 590 U/L, and D-dimer ≥ 0.5 mg/L were considered elevated. We used the χ 2 test for categorical variables and the Mann-Whitney U test for continuous variables and calculated the logistic regression for hyperglycemia. RESULTS: Of the 520 patients screened, 248 met the inclusion criteria. Baseline demographics were equally distributed between patients with hyperglycemia and those who were normoglycemic. Serum inflammatory markers in patients with or without new-onset hyperglycemia were elevated as follows: CRP (58.1% vs 65.6%, P = 0.29), ferritin (48.4% vs 34.9%, P = 0.14), D-dimer (37.1% vs 37.1%, P = 0.76) and LDH (19.4% vs 11.8%, P = 0.02). Logistic regression analysis showed LDH odds ratio (OR) = 1.623 (P = 0.256). We observed significantly higher mortality (24.2% vs 9.1%, P = 0.001; OR = 2.528, P = 0.024) and length of stay (8.89 vs 6.69, P = 0.026) in patients with hyperglycemia. CONCLUSION: Our study showed no association between CRP, ferritin, LDH, D-dimer levels, and new-onset hyperglycemia in non-diabetic patients with COVID-19 infection. It also shows an increased mortality risk and length of stay in patients with hyperglycemia. With new-onset hyperglycemia being closely associated with poor prognostic indices, it becomes pivotal to understand the underlying pathophysiological mechanisms behind the SARS-CoV-2 infection-induced hyperglycemia. We conclude that the stress hyperglycemia hypothesis is not the only mechanism of SARS-CoV-2 infection-induced hyperglycemia but rather a multicausal pathogenesis leading to hyperglycemia that requires further research and understanding. This would help us improve not only the clinical outcomes of COVID-19 disease and inpatient hyperglycemia management but also understand the long-term effects of SARS-CoV-2 infection and further management.

2.
Clin Infect Dis ; 2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-2259967

ABSTRACT

BACKGROUND: Treatment of coronavirus disease-2019 (Covid-19) with nirmatrelvir plus ritonavir (NMV-r) in high-risk non-hospitalized unvaccinated patients reduced the risk of progression to severe disease. However, the potential benefits of NMV-r among vaccinated patients are unclear. METHODS: We conducted a comparative retrospective cohort study using the TriNetX research network. Patients ≥18 years of age who were vaccinated and subsequently developed Covid-19 between December 1, 2021, and April 18, 2022, were included. Cohorts were developed based on the use of NMV-r within five days of diagnosis. The primary composite outcome was all-cause emergency room (ER) visit, hospitalization, or death at a 30-days follow-up. Secondary outcomes included individual components of primary outcomes, multisystem symptoms, Covid-19 associated complications, and diagnostic test utilization. RESULTS: After propensity score matching, 1,130 patients remained in each cohort. A primary composite outcome of all-cause ER visits, hospitalization, or death in 30 days occurred in 89 (7.87%) patients in the NMV-r cohort as compared to 163 (14.4%) patients in the non-NMV-r cohort (OR 0.5, CI 0.39-0.67; p<0.005) consistent with 45% relative risk reduction. A significant reduction in multisystem symptom burden and subsequent complications such as lower respiratory tract infection, cardiac arrhythmia, and diagnostic radiology testing were noted in NMV-r treated patients. There was no apparent increase serious complications between days 10 to 30. CONCLUSION: Treatment with NMV-r in non-hospitalized vaccinated patients with Covid-19 was associated with a reduced likelihood of emergency room visits, hospitalization, or death. Complications and overall resource utilization were also decreased.

3.
Ann Intern Med ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2234609

ABSTRACT

Description: Strategies to manage COVID-19 in the outpatient setting continue to evolve as new data emerge on SARS-CoV-2 variants and the availability of newer treatments. The Scientific Medical Policy Committee (SMPC) of the American College of Physicians (ACP) developed these living, rapid practice points to summarize the best available evidence on the treatment of adults with confirmed COVID-19 in an outpatient setting. These practice points do not evaluate COVID-19 treatments in the inpatient setting or adjunctive COVID-19 treatments in the outpatient setting. Methods: The SMPC developed these living, rapid practice points on the basis of a living, rapid review done by the ACP Center for Evidence Reviews at Cochrane Austria at the University for Continuing Education Krems (Danube University Krems). The SMPC will maintain these practice points as living by monitoring and assessing the impact of new evidence. Practice Point 1: Consider molnupiravir to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting who are within 5 to 7 days of the onset of symptoms and at high risk for progressing to severe disease. Practice Point 2: Consider nirmatrelvir-ritonavir combination therapy to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting who are within 5 days of the onset of symptoms and at high risk for progressing to severe disease. Practice Point 3: Consider remdesivir to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting who are within 7 days of the onset of symptoms and at high risk for progressing to severe disease. Practice Point 4: Do not use azithromycin to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting. Practice Point 5: Do not use chloroquine or hydroxychloroquine to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting. Practice Point 6: Do not use ivermectin to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting. Practice Point 7: Do not use nitazoxanide to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting. Practice Point 8: Do not use lopinavir-ritonavir combination therapy to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting. Practice Point 9: Do not use casirivimab-imdevimab combination therapy to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting unless it is considered effective against a SARS-CoV-2 variant or subvariant locally in circulation. Practice Point 10: Do not use regdanvimab to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting unless it is considered effective against a SARS-CoV-2 variant or subvariant locally in circulation. Practice Point 11: Do not use sotrovimab to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting unless it is considered effective against a SARS-CoV-2 variant or subvariant locally in circulation. Practice Point 12: Do not use convalescent plasma to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting. Practice Point 13: Do not use ciclesonide to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting. Practice Point 14: Do not use fluvoxamine to treat patients with confirmed mild to moderate COVID-19 in the outpatient setting.

6.
J Community Hosp Intern Med Perspect ; 12(4): 97-101, 2022.
Article in English | MEDLINE | ID: covidwho-2081650

ABSTRACT

This study was conducted with the primary aim to distinguish patients with a true stroke versus a stroke mimic based on clinical features and imaging. We conducted a retrospective case-control study on 116 adult patients who received alteplase (tPA) to treat acute stroke at our hospital. We further analyzed 79 patients with a normal computed tomography angiography (CTA). Based on their magnetic resonance imaging (MRI) of the brain, they were divided into cases (stroke mimics) and controls (true strokes). Data were collected retrospectively by reviewing individual medical charts on the electronic medical record (EMR), including age, gender, history of stroke, seizure, hypertension, diabetes, atrial fibrillation, hyperlipidemia, presenting NIH Stroke Scale/Score, hemorrhagic conversion, history of migraine, history of depression, sidedness of symptoms and aphasia. Data were categorized to separate those who were later diagnosed to be stroke mimics by being-postictal, encephalopathic, in acute migraine, suffered post-stroke recrudescence (PSR) due to metabolic insult, or had conversion disorder when symptoms could not be attributed to any medical condition or mental illness. Of the 79 study subjects, 48 (60%) were stroke mimics. The mean age of the cohort was 68.67 years, and 46.8% of the study subjects were females. Based on the multivariate logistic regression analysis, factors associated with being a stroke mimic were older age, history of migraine, and a history of prior stroke. In conclusion, increased attention to history and clinical examination as the first step can aid in the proper diagnosis of strokes versus stroke mimics. Identifying stroke mimics early could help expedite hospital workup and prevent inadvertent investigations, reducing hospital occupancy during the ongoing COVID-19 pandemic. We could potentially avoid the administration of tPA to such patients, reducing both the cost and adverse effects of it. Every stroke can cause neurological deficits, but every deficit need not be a stroke.

7.
J Am Coll Cardiol ; 80(20): 1912-1924, 2022 11 15.
Article in English | MEDLINE | ID: covidwho-2069219

ABSTRACT

Nirmatrelvir-ritonavir (NMVr) is used to treat symptomatic, nonhospitalized patients with coronavirus disease-2019 (COVID-19) who are at high risk of progression to severe disease. Patients with cardiovascular risk factors and cardiovascular disease are at a high risk of developing adverse events from COVID-19 and as a result have a higher likelihood of receiving NMVr. Ritonavir, the pharmaceutical enhancer used in NMVr, is an inhibitor of the enzymes of CYP450 pathway, particularly CYP3A4 and to a lesser degree CYP2D6, and affects the P-glycoprotein pump. Co-administration of NMVr with medications commonly used to manage cardiovascular conditions can potentially cause significant drug-drug interactions and may lead to severe adverse effects. It is crucial to be aware of such interactions and take appropriate measures to avoid them. In this review, we discuss potential drug-drug interactions between NMVr and commonly used cardiovascular medications based on their pharmacokinetics and pharmacodynamic properties.


Subject(s)
COVID-19 , Cardiovascular Agents , Humans , Ritonavir/therapeutic use , Pandemics , Drug Interactions , Cardiovascular Agents/therapeutic use , COVID-19 Drug Treatment
9.
J Mol Cell Cardiol ; 167: 92-96, 2022 06.
Article in English | MEDLINE | ID: covidwho-1757945

ABSTRACT

Virus induced endothelial dysregulation is a well-recognised feature of severe Covid-19 infection. Endothelin-1 (ET-1) is the most highly expressed peptide in endothelial cells and a potent vasoconstrictor, thus representing a potential therapeutic target. ET-1 plasma levels were measured in a cohort of 194 Covid-19 patients stratified according to the clinical severity of their illness. Hospitalised patients, including those who died and those developing acute myocardial or kidney injury, had significantly elevated ET-1 plasma levels during the acute phase of infection. The results support the hypothesis that endothelin receptor antagonists may provide clinical benefit for certain Covid-19 patients.


Subject(s)
COVID-19 , Endothelin-1 , Endothelial Cells , Endothelin Receptor Antagonists , Humans , Receptor, Endothelin A , Receptors, Endothelin , Vasoconstrictor Agents
10.
Ann Intern Med ; 175(4): 556-565, 2022 04.
Article in English | MEDLINE | ID: covidwho-1702163

ABSTRACT

DESCRIPTION: The Scientific Medical Policy Committee (SMPC) of the American College of Physicians (ACP) developed these living, rapid practice points to summarize the current best available evidence on the antibody response to SARS-CoV-2 infection and protection against reinfection with SARS-CoV-2. This is version 2 of the ACP practice points, which serves to update version 1, published on 16 March 2021. These practice points do not evaluate vaccine-acquired immunity or cellular immunity. METHODS: The SMPC developed this version of the living, rapid practice points based on an updated living, rapid, systematic review conducted by the Portland VA Research Foundation and funded by the Agency for Healthcare Research and Quality. PRACTICE POINT 1: Do not use SARS-CoV-2 antibody tests for the diagnosis of SARS-CoV-2 infection. PRACTICE POINT 2: Do not use SARS-CoV-2 antibody tests to predict the degree or duration of natural immunity conferred by antibodies against reinfection, including natural immunity against different variants. RETIREMENT FROM LIVING STATUS: Although natural immunity remains a topic of scientific interest, this topic is being retired from living status given the availability of effective vaccines for SARS-CoV-2 and widespread recommendations for and prevalence of their use. Currently, vaccination is the best clinical recommendation for preventing infection, reinfection, and serious illness from SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Physicians , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Humans , Immunity, Innate , Reinfection , SARS-CoV-2
13.
Cell ; 184(18): 4713-4733.e22, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1343153

ABSTRACT

SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity , SARS-CoV-2/physiology , Severity of Illness Index , Adult , Aged , Bystander Effect , COVID-19/genetics , Cohort Studies , Female , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/genetics , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Transcription, Genetic , Viral Load
15.
Gut Microbes ; 13(1): 1-15, 2021.
Article in English | MEDLINE | ID: covidwho-1281828

ABSTRACT

To investigate the relationship between intestinal microbiota and SARS-CoV-2-mediated pathogenicity in a United States, majority African American cohort. We prospectively collected fecal samples from 50 SARS-CoV-2 infected patients, 9 SARS-CoV-2 recovered patients, and 34 uninfected subjects seen by the hospital with unrelated respiratory medical conditions (controls). 16S rRNA sequencing and qPCR analysis was performed on fecal DNA/RNA. The fecal microbial composition was found to be significantly different between SARS-CoV-2 patients and controls (PERMANOVA FDR-P = .004), independent of antibiotic exposure. Peptoniphilus, Corynebacterium and Campylobacter were identified as the three most significantly enriched genera in COVID-19 patients compared to controls. Actively infected patients were also found to have a different gut microbiota than recovered patients (PERMANOVA FDR-P = .003), and the most enriched genus in infected patients was Campylobacter, with Agathobacter and Faecalibacterium being enriched in the recovered patients. No difference in microbial community structure between recovered patients and uninfected controls was observed, nor a difference in alpha diversity between the three groups. 24 of the 50 COVID-19 patients (48%) tested positive via RT-qPCR for fecal SARS-CoV-2 RNA. A significant difference in gut microbial composition between SARS-CoV-2 positive and negative samples was observed, with Klebsiella and Agathobacter being enriched in the positive cohort. No significant associations between microbiome composition and disease severity was found. The intestinal microbiota is sensitive to the presence of SARS-CoV-2, with increased relative abundance of genera (Campylobacter, Klebsiella) associated with gastrointestinal (GI) disease. Further studies are needed to investigate the functional impact of SARS-CoV-2 on GI health.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Cohort Studies , Feces/microbiology , Feces/virology , Female , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index , United States/epidemiology
16.
Am J Gastroenterol ; 116(8): 1638-1645, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1248431

ABSTRACT

INTRODUCTION: Proton pump inhibitor (PPI) use was recently reported to be associated with increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and worse clinical outcomes. The underlying mechanism(s) for this association are unclear. METHODS: We performed a prospective study of hospitalized coronavirus disease 2019 (COVID-19) patients and COVID-negative controls to understand how PPI use may affect angiotensin-converting enzyme 2 (ACE2) expression and stool SARS-CoV-2 RNA. Analysis of a retrospective cohort of hospitalized patients with COVID-19 from March 15, 2020 to August 15, 2020 in 6 hospitals was performed to evaluate the association of PPI use and mortality. Covariates with clinical relevance to COVID-19 outcomes were included to determine predictors of in-hospital mortality. RESULTS: Control PPI users had higher salivary ACE2 mRNA levels than nonusers, 2.39 ± 1.15 vs 1.22 ± 0.92 (P = 0.02), respectively. Salivary ACE2 levels and stool SARS-CoV-2 RNA detection rates were comparable between users and nonusers of PPI. In 694 hospitalized patients with COVID-19 (age = 58 years, 46% men, and 65% black), mortality rate in PPI users and nonusers was 30% (68/227) vs 12.1% (53/439), respectively. Predictors of mortality by logistic regression were PPI use (adjusted odds ratio [aOR] = 2.72, P < 0.001), age (aOR = 1.66 per decade, P < 0.001), race (aOR = 3.03, P = 0.002), cancer (aOR = 2.22, P = 0.008), and diabetes (aOR = 1.95, P = 0.003). The PPI-associated mortality risk was higher in black patients (aOR = 4.16, 95% confidence interval: 2.28-7.59) than others (aOR = 1.62, 95% confidence interval: 0.82-3.19, P = 0.04 for interaction). DISCUSSION: COVID-negative PPI users had higher salivary ACE2 expression. PPI use was associated with increased mortality risk in patients with COVID-19, particularly African Americans.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , COVID-19/mortality , Proton Pump Inhibitors/adverse effects , Adult , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies , Risk Assessment
17.
Acta Biomed ; 92(1): e2021025, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-1155016

ABSTRACT

Coronavirus disease (COVID 19) has involved millions of people all over the world. Tuberculosis (TB) continues to affect millions of people every year with high mortality. There is limited literature on the occurrence of COVID 19 in patients with TB. We reviewed the available data on various clinical details, management, and outcome among patients with COVID-19 and TB. 8 studies reported a total of 80 patients with this coinfection. These patients were reported from ten different countries, with Italy reporting the largest number of cases. Migrant, males constituted a major proportion of cases. Most reported patients were symptomatic. Fever, dry cough, and dyspnea were the most commonly reported symptoms. Bilateral ground glass opacities were more common in COVID 19 infection and cavitary lesions were more common in patients with TB. Most reported TB patients had been found to have mycobacterium tuberculosis from sputum culture in the background of pulmonary TB. Most patients of TB were treated with multidrug regimen antitubercular therapy. In all 8 studies, COVID 19 was treated as per the local protocol. Mortality was reported in more than 10% of patients. Mortality was higher in elderly patients (> 70 years) and amongst patient with multiple medical comorbidities.


Subject(s)
COVID-19 Drug Treatment , Coinfection/drug therapy , SARS-CoV-2 , Tuberculosis/drug therapy , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , Coinfection/epidemiology , Coinfection/mortality , Female , Humans , Male , Middle Aged , Tuberculosis/epidemiology , Tuberculosis/mortality
18.
Ann Intern Med ; 174(6): 828-835, 2021 06.
Article in English | MEDLINE | ID: covidwho-1136617

ABSTRACT

DESCRIPTION: The widespread availability of SARS-CoV-2 antibody tests raises important questions for clinicians, patients, and public health professionals related to the appropriate use and interpretation of these tests. The Scientific Medical Policy Committee (SMPC) of the American College of Physicians developed these rapid, living practice points to summarize the current and best available evidence on the antibody response to SARS-CoV-2 infection, antibody durability after initial infection with SARS-CoV-2, and antibody protection against reinfection with SARS-CoV-2. METHODS: The SMPC developed these rapid, living practice points based on a rapid and living systematic evidence review done by the Portland VA Research Foundation and funded by the Agency for Healthcare Research and Quality. Ongoing literature surveillance is planned through December 2021. When new studies are identified and a full update of the evidence review is published, the SMPC will assess the new evidence and any effect on the practice points. PRACTICE POINT 1: Do not use SARS-CoV-2 antibody tests for the diagnosis of SARS-CoV-2 infection. PRACTICE POINT 2: Antibody tests can be useful for the purpose of estimating community prevalence of SARS-CoV-2 infection. PRACTICE POINT 3: Current evidence is uncertain to predict presence, level, or durability of natural immunity conferred by SARS-CoV-2 antibodies against reinfection (after SARS-CoV-2 infection).


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , COVID-19 Testing/standards , COVID-19/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL